

EPC - 24

Proportional Valve PI – Controller

1. Introduction

The EPC – 24 control unit consists of a PI – controller with pulse modulated (PWM) power amplifier. It has been realised using microcontroller technology and provides an appropriate tool for controlling of open- and closedloop control systems containing i.e. proportional valves. The plastic housing allows a straightforward installation onto mounting rails of type DIN 46277/1 and DIN 462277/3. Furthermore, an efficient wiring is possible by the clamps arranged at the side walls of the housing. The power supply voltage V_s lies $V_s = 12 - 36 \text{ VDC}$ and the maximal output current I_{max} is $I_{max} = 3.5 \text{ A}$. In addition, the unit operates in the open or closed loop mode. The operating mode is indicated by a bicolour LED mounted in the front panel. Moreover,

Figure 1: Front view of the EPC – 24 control unit

using the internal 10 VDC reference in order to generate the set-point signal, an open or closed loop control system can be realised with only a few additional electrical components. Due to the PWM – power amplifier the heat dissipation of the unit is kept very low, which allows an unproblematic installation of the unit into a closed housing. The parameters can be adjusted by potentiometers accessible through destined holes, which are laced in the front cover. Finally, a monitoring of the actual value allows an immediate shutdown of the output current in case of its absence.

A complete block diagram of the control unit is displayed below in figure 4.

2. Electrical and Mechanical Data

Electrical Data and Terminal Assignment

Table 1:Electrical Data

Description	Value		
Supply Voltage V _s	12 – 36 VDC		
Reference Voltage V _{ref}	+ 10 V		
Analogue inputs 1)	$0 - 10 \text{ VDC}^{2}$		
	0-20 mA		
	4 -20 mA		
Output current Iout	≤ 3.5 A		
Digital inputs	$U_c < 0.8 \text{ V} \rightarrow \text{off}$		
	$U_c > 1.5 \text{ V} \rightarrow \text{on}$		
PWM-frequency υ	70 – 500 Hz		

The actual value inputs are available in the indicated configurations.

A schematic drawing of the terminal assignment is shown in figure 4.

Front cover

The aluminium front cover is provided with an oilresistant silk screen printing. The potentiometers for parameter adjustments are accessible from the front cover and can be tuned using a suitable screw-driver. Figure 2 shows a schematic front view of the unit.

Parameters

Minimal and maximal output current can be tuned in the range of 0-30 % and 50-100 % with respect to the nominal coil current, respectively. The following 5 parameters can be adjusted:

- Amplification p
- Integration I
- Maximal current I_{max}
- Minimal current Imin
- PWM frequency ν

Operating mode

Selecting the corresponding inputs the power amplifier can be switch on and off. A bicolour LED indicates the actual status of the unit (Table 3).

 Table 2:Terminal Assignment

Description	Terminal
$+V_{S}$	D
GND (power)	F
V_{ref}	K
GND (signal)	M
Amplifier on	В
Controller on	E
+ Set-up value	Н
- Set-up value	G
+ Actual value	J
 Actual value 	L
+ Current output	C
- Current output	A

Figure 2: Schematic front view of the EPC-24 unit.

Table 3:LED – Status display

LED	Enable	Closed	Status
	(B)	Loop (E)	
Red	off	Off	No error /
			amplifier off
Red	X	X	Error
alternating			
Green	on	Off	Amplifier on
			/ open loop
Green	on	on	Amplifier on
alternating			/ closed loop

²⁾ Differential input

Mechanical Dimensions

T	ype	TS1	TS3	TS4/5
-	Α	15	10	17.5
	В	107	102	109,5

Figure 3: Mechanical Dimensions. The module can be directly mounted onto mounting rails corresponding to DIN 46277/1 and DIN 462277/3.

3. Block-diagram

Figure 4: Block-diagram of the EPC-24 unit.

4. Adjustment Guidance

- 1. Activate enable and desactivate closed loop: The unit operates in open loop mode.
- 2. Set set-point voltage to $U_c = 0V$: The minimal current I_{min} can be adjusted.
- 3. Set set-point voltage to $U_c = 10V$: The maximal current I_{max} can be adjusted.
- 4. Set set-point voltage to a value of approximately $U_c \approx 5V$ and turn the potentiometer Frequ to its maximal value: Reduce the frequency ν , if the system starts to oscillate turn the potentiometer back by half of a turn.
- 5. Turn potentiometers P and I counterclockwise to its minimal values and activate closed loop: Turn potentiometer p clockwise until the system becomes instable. Subsequently turn it back by a half of a turn. If the transient response lies in the desired range the adjustments are terminated, otherwise continue with point 6.
- 6. Turn the potentiometer I clockwise until the transient response behaves optimal. Continue with point 5.

5. Typical Applications

a) Using internal 10 V reference voltage:

Figure 5: Example using internal reference voltage.

b) Using programmable logic controller (PLC):

Figure 6: Example using PLC